# NCERT Solutions For Class 6 Maths Chapter 12 Exercise 12.1

## Ncert Solutions for Class 6 Maths Chapter 12 Ratio and Proportion Exercise 12.1:-

**Exercise 12.1**Â Class 6 maths NCERT solutions Chapter 12 Ratio And Proportion pdf download:-

Â

Â

### Ncert Solution for Class 6 Maths Chapter 11 Ratio And Proportion Exercise 12.1 Tips:-

**Introduction**

In our daily life, many times we compare two

quantities of the same type. For example, Avnee and

Shari collected flowers for scrap notebook. Avene

collected 30 flowers and Shari collected 45 flowers.

So, we may say that Shari collected 45 â€“ 30 = 15

flowers more than Avnee.

Also, if the height of Rahim is 150 cm and that of

Avene is 140 cm then, we may say that the height of

Rahim is 150 cm â€“ 140 cm = 10 cm more than Avnee.

This is one way of comparison by taking the difference.

If we wish to compare the lengths of an ant and a

grasshopper, taking the difference does not express

the comparison. The grasshopperâ€™s length, typically

4 cm to 5 cm is too long as compared to the antâ€™s

length which is a few mm. The comparison will be better

if we try to find how many ants can be placed

one behind the other to match the length of

grasshopper. So, we can say that 20 to 30 ants have

the same length as a grasshopper.

Consider another example.

Cost of a car is 2,50,000 and that of a motorbike is ` 50,000. If we calculate

the difference between the costs, it is 2,00,000 and if we compare by division;

i.e. 2,50,000/50,000=5/1

We can say that the cost of the car is five times the cost of the motorbike.

Thus, in certain situations, comparison by division makes better sense than

comparison by taking the difference. The comparison by division is the Ratio.

In the next section, we shall learn more about â€˜Ratiosâ€™.

**Ratio**

Consider the following:

Ishaâ€™s weight is 25 kg and her fatherâ€™s weight is 75 kg. How many times

Fatherâ€™s weight is of Ishaâ€™s weight? It is three times.

Cost of a pen is ` 10 and the cost of a pencil is ` 2. How many times the cost of a pen

that of a pencil? Obviously, it is five times.

In the above examples, we compared the two quantities in terms of how many timesâ€™. This comparison is known as the Ratio. We denote

ratio using symbol â€˜:â€™

Consider the earlier examples again. We can say,

The ratio of fatherâ€™s weight to Ishaâ€™s weight = 75/25=3/1= 3:1

The ratio of the cost of a pen to the cost of a pencil = 10/2 = 5/1= 5:1

try these

1. Find the ratio of the number of notebooks to the number of

books in your bag.

2. Find the ratio of the number of desks and chairs in your

classroom.

3. Find the number of students above twelve years of age in your class.

Then, find the ratio of the number of students with age above twelve years

and the remaining students.

4. Find the ratio of the number of doors and the number of windows in your

classroom.

5. Draw any rectangle and find the ratio of its length to its breadth.